Skip to main content
Humanities LibreTexts

2.5.7: Proof-Theoretic Notions

  • Page ID
    121702
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\def\Assign#1#2{ { #1^{\Struct{#2}} } }\)
    \(\def\Atom#1#2{ { \mathord{#1}(#2) } }\)
    \(\def\Bin{ {\mathbb{B}} }\)
    \(\def\cardeq#1#2{ { #1 \approx #2 } }\)
    \(\def\cardle#1#2{ { #1 \preceq #2 } }\)
    \(\def\cardless#1#2{ { #1 \prec #2 } }\)
    \(\def\cardneq#1#2{ { #1 \not\approx #2 } }\)
    \(\def\comp#1#2{ { #2 \circ #1 } }\)
    \(\def\concat{ { \;\frown\; } }\)
    \(\def\Cut{ { \text{Cut} } }\)
    \(\def\Discharge#1#2{ { [#1]^#2 } }\)
    \(\def\DischargeRule#1#2{ { \RightLabel{#1}\LeftLabel{\scriptsize{#2} } } }\)
    \(\def\dom#1{ {\operatorname{dom}(#1)} }\)
    \(\def\Domain#1{ {\left| \Struct{#1} \right|} }\)
    \(\def\Elim#1{ { {#1}\mathrm{Elim} } }\)
    \(\newcommand{\Entails}{\vDash}\)
    \(\newcommand{\EntailsN}{\nvDash}\)
    \(\def\eq[#1][#2]{ { #1 = #2 } }\)
    \(\def\eqN[#1][#2]{ { #1 \neq #2 } }\)
    \(\def\equivclass#1#2{ { #1/_{#2} } }\)
    \(\def\equivrep#1#2{ { [#1]_{#2} } }\)
    \(\def\Exchange{ { \text{X} } }\)
    \(\def\False{ { \mathbb{F} } }\)
    \(\def\FalseCl{ { \lfalse_C } }\)
    \(\def\FalseInt{ { \lfalse_I } }\)
    \(\def\fCenter{ { \,\Sequent\, } }\)
    \(\def\fdefined{ { \;\downarrow } }\)
    \(\def\fn#1{ { \operatorname{#1} } }\)
    \(\def\Frm[#1]{ {\operatorname{Frm}(\Lang #1)} }\)
    \(\def\fundefined{ { \;\uparrow } }\)
    \(\def\funimage#1#2{ { #1[#2] } }\)
    \(\def\funrestrictionto#1#2{ { #1 \restriction_{#2} } }\)
    \(\newcommand{\ident}{\equiv}\)
    \(\newcommand{\indcase}[2]{#1 \ident #2\text{:}}\)
    \(\newcommand{\indcaseA}[2]{#1 \text{ is atomic:}}\)
    \(\def\indfrm{ { A } }\)
    \(\def\indfrmp{ { A } }\)
    \(\def\joinrel{\mathrel{\mkern-3mu}}\)
    \(\def\lambd[#1][#2]{\lambda #1 . #2}\)
    \(\def\Lang#1{ { \mathcal{#1} } }\)
    \(\def\LeftR#1{ { {#1}\mathrm{L} } }\)
    \(\def\len#1{ {\operatorname{len}(#1)} }\)
    \(\def\lexists#1#2{ { \exists #1\, #2 } }\)
    \(\def\lfalse{ {\bot} }\)
    \(\def\lforall#1#2{ { \forall#1\, #2 } }\)
    \(\newcommand{\lif}{\rightarrow}\)
    \(\newcommand{\liff}{\leftrightarrow}\)
    \(\def\Log#1{ { \mathbf{#1} } }\)
    \(\def\ltrue{ {\top} }\)
    \(\def\Id#1{ {\operatorname{Id}_#1} }\)
    \(\def\Int{ {\mathbb{Z}} }\)
    \(\def\Intro#1{ { {#1}\mathrm{Intro} } }\)
    \(\def\mModel#1{ { \mathfrak{#1} } }\)
    \(\newcommand{\mSat}[3][{}]{\mModel{#2}{#1}\Vdash{#3}}\)
    \(\newcommand{\mSatN}[3][{}]{\mModel{#2}{#1}\nVdash{#3}}\)
    \(\def\Nat{ {\mathbb{N}} }\)
    \(\def\nicefrac#1#2{ {{}^#1/_#2} }\)
    \(\def\num#1{ { \overline{#1} } }\)
    \(\def\ran#1{ {\operatorname{ran}(#1)} }\)
    \(\newcommand{\Obj}[1]{\mathsf{#1}}\)
    \(\def\Rat{ {\mathbb{Q}} }\)
    \(\def\Real{ {\mathbb{R}} }\)
    \(\def\RightR#1{ { {#1}\mathrm{R} } }\)
    \(\def\Part#1#2{ { \Atom{\Obj P}{#1, #2} } }\)
    \(\def\pto{ { \hspace{0.1 cm}\to\hspace{-0.44 cm}\vcenter{\tiny{\hbox{|}}}\hspace{0.35 cm} } }\)
    \(\def\PosInt{ {\mathbb{Z}^+} }\)
    \(\def\Pow#1{ {\wp(#1)} }\)
    \(\newcommand{\Proves}{\vdash}\)
    \(\newcommand{\ProvesN}{\nvdash}\)
    \(\def\Relbar{\mathrel{=}}\)
    \(\newcommand{\Sat}[3][{}]{\Struct{#2}{#1}\vDash{#3}}\)
    \(\newcommand{\SatN}[3][{}]{\Struct{#2}{#1}\nvDash{#3}}\)
    \(\newcommand{\Sequent}{\Rightarrow}\)
    \(\def\Setabs#1#2{ { \{#1:#2\} } }\)
    \(\newcommand{\sFmla}[2]{#1\,#2}\)
    \(\def\Struct#1{ {#1} }\)
    \(\def\subst#1#2{ { #1/#2 } }\)
    \(\def\Subst#1#2#3{ { #1[\subst{#2}{#3}] } }\)
    \(\def\TMblank{ { 0 } }\)
    \(\newcommand{\TMendtape}{\triangleright}\)
    \(\def\TMleft{ { L } }\)
    \(\def\TMright{ { R } }\)
    \(\def\TMstay{ { N } }\)
    \(\def\TMstroke{ { 1 } }\)
    \(\def\TMtrans#1#2#3{ { #1,#2,#3 } }\)
    \(\def\Trm[#1]{ {\operatorname{Trm}(\Lang #1)} }\)
    \(\def\True{ { \mathbb{T} } }\)
    \(\newcommand{\TRule}[2]{#2#1}\)
    \(\def\tuple#1{ {\langle #1 \rangle} }\)
    \(\newcommand{\Value}[3][\,]{\mathrm{Val}_{#1}^{#3}(#2)}\)
    \(\def\Var{ { \mathrm{Var} } }\)
    \(\newcommand{\varAssign}[3]{#1 \sim_{#3} #2}\)
    \(\def\Weakening{ { \text{W} } }\)

    Just as we’ve defined a number of important semantic notions (validity, entailment, satisfiability), we now define corresponding proof-theoretic notions. These are not defined by appeal to satisfaction of sentences in structures, but by appeal to the derivability or non-derivability of certain sentences from others. It was an important discovery that these notions coincide. That they do is the content of the soundness and completeness theorems.

    Definition \(\PageIndex{1}\): Theorems

    A sentence \(A\) is a theorem if there is a derivation of \(A\) in natural deduction in which all assumptions are discharged. We write \(\Proves A\) if \(A\) is a theorem and \(\ProvesN A\) if it is not.

    Definition \(\PageIndex{2}\): Derivability

    A sentence \(A\) is derivable from a set of sentences \(\Gamma\), \(\Gamma \Proves A\), if there is a derivation with conclusion \(A\) and in which every assumption is either discharged or is in \(\Gamma\). If \(A\) is not derivable from \(\Gamma\) we write \(\Gamma \ProvesN A\).

    Definition \(\PageIndex{3}\): Consistency

    A set of sentences \(\Gamma\) is inconsistent iff \(\Gamma \Proves \lfalse\). If \(\Gamma\) is not inconsistent, i.e., if \(\Gamma \ProvesN \lfalse\), we say it is consistent.

    Proposition \(\PageIndex{1}\): Reflexivity

    If \(A \in \Gamma\), then \(\Gamma \Proves A\).

    Proof. The assumption \(A\) by itself is a derivation of \(A\) where every undischarged assumption (i.e., \(A\)) is in \(\Gamma\). ◻

    Proposition \(\PageIndex{2}\): Monotony

    If \(\Gamma \subseteq \Delta\) and \(\Gamma \Proves A\), then \(\Delta \Proves A\).

    Proof. Any derivation of \(A\) from \(\Gamma\) is also a derivation of \(A\) from \(\Delta\). ◻

    Proposition \(\PageIndex{3}\): Transitivity

    If \(\Gamma \Proves A\) and \(\{A\} \cup \Delta \Proves B\), then \(\Gamma \cup \Delta \Proves B\).

    Proof. If \(\Gamma \Proves A\), there is a derivation \(\delta_0\) of \(A\) with all undischarged assumptions in \(\Gamma\). If \(\{A\} \cup \Delta \Proves B\), then there is a derivation \(\delta_1\) of \(B\) with all undischarged assumptions in \(\{A\} \cup \Delta\). Now consider:

    9.7.1.png

    The undischarged assumptions are now all among \(\Gamma \cup \Delta\), so this shows \(\Gamma \cup \Delta \Proves B\). ◻

    When \(\Gamma = \{A_1, A_2, \ldots, A_k\}\) is a finite set we may use the simplified notation \(A_1,A_2,\ldots,A_k \Proves B\) for \(\Gamma \Proves B\), in particular \(A \Proves B\) means that \(\{A\} \Proves B\).

    Note that if \(\Gamma \Proves A\) and \(A \Proves B\), then \(\Gamma \Proves B\). It follows also that if \(A_1, \dots, A_n \Proves B\) and \(\Gamma \Proves A_i\) for each \(i\), then \(\Gamma \Proves B\).

    Proposition \(\PageIndex{4}\)

    The following are equivalent.

    1. \(\Gamma\) is inconsistent.
    2. \(\Gamma \Proves {A}\) for every sentence \({A}\).
    3. \(\Gamma \Proves {A}\) and \(\Gamma \Proves \lnot {A}\) for some sentence \({A}\).

    Proof. Exercise. ◻

    Problem \(\PageIndex{1}\)

    Prove Proposition \(\PageIndex{4}\).

    Proposition \(\PageIndex{5}\): Compactness
    1. If \(\Gamma \Proves A\) then there is a finite subset \(\Gamma_0 \subseteq \Gamma\) such that \(\Gamma_0 \Proves A\).
    2. If every finite subset of \(\Gamma\) is consistent, then \(\Gamma\) is consistent.

    Proof.

    1. If \(\Gamma \Proves A\), then there is a derivation \(\delta\) of \(A\) from \(\Gamma\). Let \(\Gamma_0\) be the set of undischarged assumptions of \(\delta\). Since any derivation is finite, \(\Gamma_0\) can only contain finitely many sentences. So, \(\delta\) is a derivation of \(A\) from a finite \(\Gamma_0 \subseteq \Gamma\).
    2. This is the contrapositive of (1) for the special case \(A \ident \lfalse\).


    This page titled 2.5.7: Proof-Theoretic Notions is shared under a CC BY license and was authored, remixed, and/or curated by Richard Zach et al. (Open Logic Project) .