8.1: Introduction to Glaze Chemistry
- Page ID
- 299307
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Basic Components of Glazes and Their Interactions
- Silica (Glass Former): Silica is the primary ingredient responsible for forming the glassy surface of a glaze. It melts at high temperatures, creating a smooth, glossy coating. Without sufficient silica, a glaze may lack shine or durability.
- Fluxes (Melting Agents): Fluxes like feldspar, calcium carbonate, or lithium carbonate lower the melting point of silica, enabling it to fuse during firing. The type of flux affects the glaze's texture and gloss.
- Alumina (Stabilizer): Alumina adds viscosity to molten glaze, preventing it from running off the piece. It also contributes to matte finishes and enhances durability.
- Balance of Components: The interaction between silica, fluxes, and alumina determines the melting point, surface texture, and overall stability of a glaze.
The Role of Fluxes, Silica, and Alumina in Glaze Formation
- Fluxes in Detail: Fluxes vary by type—alkali fluxes like sodium create fluid, glossy finishes, while alkaline earth fluxes like calcium result in stable, matte surfaces. The choice of flux influences the glaze's firing range.
- Silica as the Foundation: Too little silica leads to under-fired, dull surfaces, while too much can make the glaze overly stiff and prone to cracking.
- Alumina’s Importance: A glaze with insufficient alumina may drip or run during firing. Conversely, excess alumina can cause a rough, dry texture.
- Achieving Balance: Properly balanced proportions ensure a glaze that is both aesthetically pleasing and structurally sound.
Colorants and Opacifiers: How to Achieve Desired Colors and Effects
- Colorants: Oxides like cobalt, copper, and iron produce vivid colors, with the final hue dependent on firing atmosphere. For example, copper oxide yields green in oxidation but red in reduction.
- Opacifiers: Materials like tin oxide or zirconium dioxide make glazes opaque, enhancing color richness and covering flaws in the clay body.
- Layering Colors: Combining multiple colorants can create complex, layered effects. For example, cobalt and rutile together produce unique blue-green hues.
- Testing Colors: Always test colorants at different concentrations, as slight variations can lead to dramatic changes in the final result.
Understanding Glaze Recipes and How to Alter Them
- Breaking Down Recipes: Glaze recipes are typically written as percentages. For example, 40% feldspar, 30% silica, 20% whiting, and 10% kaolin. These percentages guide the proportions of each ingredient.
- Modifying Recipes: To make a glaze glossier, increase fluxes slightly. For a matte finish, add alumina or reduce fluxes.
- Experimenting Safely: Alter one variable at a time and document changes meticulously to track results.
- Batch Sizes: Scale recipes up or down based on your needs, ensuring consistent ratios of ingredients.
1. Select a Recipe: Choose a glaze recipe. For this example, let's say the recipe calls for:
- Silica: 30%
- Feldspar: 40%
- Whiting: 20%
- Kaolin: 10%
2. Total Batch Size: Determine the total batch size you want to make. Let's say you're aiming for a 1000-gram batch.
3. Calculate Ingredient Weights:
- Silica: 30% of 1000 grams = 0.30 x 1000 = 300 grams
- Feldspar: 40% of 1000 grams = 0.40 x 1000 = 400 grams
- Whiting: 20% of 1000 grams = 0.20 x 1000 = 200 grams
- Kaolin: 10% of 1000 grams = 0.10 x 1000 = 100 grams\
4. Weigh Each Ingredient: Measure out each ingredient according to the calculated weights.
- Silica: Weigh out 300 grams
- Feldspar: Weigh out 400 grams
- Whiting: Weigh out 200 grams
- Kaolin: Weigh out 100 grams
5. Mixing: Combine all ingredients in a larger container and mix thoroughly.
6. Adjustments: If needed, adjust the consistency or properties of the glaze by adding more ingredients. For example, if the glaze is too thick, you might add water. If it's too thin, you might add more dry ingredients.
7. Testing: Test the glaze on a sample piece or test tile to observe the results.
8. Storage: Store any leftover glaze in a tightly sealed container labeled with the recipe name and date.
Safety Considerations in Glaze Chemistry
- Handling Materials: Always wear gloves and a mask when working with powdered glaze ingredients to avoid skin irritation or inhalation of fine particles.
- Toxicity Awareness: Some materials, like lead-based fluxes or certain oxides, are hazardous. Ensure all glazes used for functional ware are food-safe.
- Proper Ventilation: Work in a well-ventilated space, especially during mixing and firing, as some materials release fumes at high temperatures.
- Storage: Label all glaze materials clearly and store them in sealed containers away from moisture or heat.


