Skip to main content
Humanities LibreTexts

1.3: Solfège Methods

  • Page ID
    258459
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    What is Solfège?

    You might have had choir experience where your teacher used solfège. You might also be familiar with the song "Do-Re-Mi" from the 1965 movie, The Sound of Music. Or, you might have never before heard the term "solfège." Solfège is a method of attaching syllables to notes.

    Solfège syllables allow us to:

    • use syllables to sing along with pitches (which is a lot easier than singing the note names, trust me!)
    • correlate the distances between the notes (intervals) with these syllables
    • train our ears to hear patterns
    • translate interval relationships into any key
    • look at a piece of music and be able to hear it in our head without playing it
    • recall melodies that you hear by recalling the pattern of the syllables

    Fixed Do

    The Fixed Do method assigns each pitch class a syllable, regardless of the accidental or key. Some solfège methods sing the letter names (C, D, E, F, G, A, and B) and just drop the accidentals. Others use the syllables do, re, mi, fa, sol, la, and ti assigned to the pitch classes.

    Fixed Do Scale Degrees and Syllables
    Pitch Class (Letter Name) Solfège Syllable
    C (including C-sharp and C-flat) do
    D (including D-sharp and D-flat) re
    E (including E-sharp and E-flat) mi
    F (including F-sharp and F-flat) fa
    G (including G-sharp and G-flat) sol
    A (including A-sharp and A-flat) la
    B (including B-sharp and B-flat) ti

    "Application" written in tiles in front of a wood background

    Image by Gerd Altmann from Pixabay

    The seven pedals of a concert harp

    Pedal markings in harp music are often labeled with the Fixed Do system. For example, the E pedal is labeled as Mi# when the harpist is to move the E pedal into the sharp position.

    Moveable Do

    Moveable Do connects each of the degrees of the scale to a syllable. This is the system we will be using the most throughout this text.

    Moveable Do Syllables for Scale Degrees of the Major Scale
    Scale Degree Solfège Syllable
    1 do
    2 re
    3 mi
    4 fa
    5 sol
    6 la
    7 ti

    With Moveable Do, the first degree of the scale (the name of the major or minor key) will always be do. The first scale degree is also called the Tonic. Similarly, the seventh scale degree (ti) can be called the Leading Tone.

    Scale Degrees and Solfège Syllables in Common Sharp Keys
    Scale Degree Solfège Syllable Pitch in C Major Pitch in G Major Pitch in E Major
    1 do C G E
    2 re D A F-sharp
    3 mi E B G-sharp
    4 fa F C A
    5 sol G D B
    6 la A E C-sharp
    7 ti B F-sharp D-sharp

    Numbers

    The number system is similar to the Moveable Do system. With numbers, the scale degree numbers are used. In this system, the root or keynote of the scale will be assigned "1," the next ascending note of the scale will be assigned "2" and so on. The seventh note of the scale is often shortened to "sev" to make it easier to sing as a short syllable.

    You can refer to the table above to reference the scale degree numbers for the various keys.

    Conclusion

    Different countries and music traditions around the world use different systems of attaching syllables to pitches. There is no right way or wrong way, and there are pros and cons to using each system. It is beneficial to be familiar with all of the systems.


    This page titled 1.3: Solfège Methods is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Lauren C. Sharkey.

    • Was this article helpful?