Skip to main content
Humanities LibreTexts

3.3.2: Moving the Camera

  • Page ID
    287347
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Much of the above discussion about composition is as true for still photography and painting as it is for cinematography. But what makes cinema special is, of course, movement, both in terms of how subjects move within the frame – also known as blocking – and how the frame itself moves through a scene. While the blocking of actors in a scene is important, I want to focus on how a cinematographer can move their camera within a single shot to reframe an image and potentially change the meaning of the scene.

    There are many different ways a camera can move. Let’s take a look at some of the simplest, starting with pans and tilts. A tilt is simply moving the camera up or down from a fixed point, usually a tripod. A pan is simply rotating the camera from side to side, also from a fixed point. Here’s an example of a pan:

    The effect is the same as if you simply turned your head from left to right, keeping your eyes straight ahead. But by moving the frame, the cinematographer is able to radically reorient our point of view while also creating a sense of anticipation as to what will be revealed.

    But if you want the camera to actually move through the space, not simply move left to right or up and down, there are a few options. You could just pick it up and move it. That’s called, appropriately enough, a handheld shot. But if you want that movement to be more subtle, or at least a lot smoother, you’ll want more precise control over how the camera moves. One way to achieve that is to put it on wheels. Sometimes, those wheels are stuck on a track that grips have laid down for a particular shot, and sometimes, they’re just well-oiled wheels that will go wherever the grip pushes them. Either way, this is called a dolly shot. Dolly shots come in all sorts of flavors. You can dolly in or dolly out, that is, move toward or away from a stationary subject. Here’s an example of a dolly out combined with a tilt:

    you can set up a tracking shot that tracks along with a subject in motion (and may or may not be on actual tracks). Here’s a simple tracking shot of two kids on their bicycles:

    In this case, the camera was mounted on the back of a van, tracking in front of the subjects and leading them forward. Notice too, how towards the end of the shot, the camera shifts subtly to reframe the image of just the girl, indicating a subtle shift in emphasis in the story.

    You can also put the camera on a crane to achieve a really dramatic shift in the point of view, like this crane shot from High Noon (1952, Fred Zinneman, dir.):

    Notice how effective this shift in perspective is in making the character seem isolated, small, and powerless without even knowing the context or the rest of the story (it’s an amazing film, and you should go watch it right now).

    If you want the freedom of physically carrying the camera around through a scene but still want the smooth motion of a dolly, you can use a special rig called a Steadicam. Steadicam is actually a brand name for a camera stabilizer that has become a somewhat generic term (like Kleenex or Xerox… does anyone still say Xerox?). The camera is strapped to the camera operator using a system of counterweights, gimbals, and gyroscopes (it feels like I’m making those words up, but I’m not):

    Steadicam and operator in front of crowd. Public domain image.
    Steadicam and operator.

    The result is incredibly smooth motion regardless of terrain.

    Here’s one of the most famous Steadicam shots in cinema history from Martin Scorsese’s Goodfellas (1990):

    Try following those two actors through all of that with a camera on wheels!

    Pans, tilts, dollies, cranes, and steadicams, regardless of how a filmmaker moves the camera, one question they must always answer first is: Why move the camera at all? That is, is the movement motivated? In the case of Scorsese’s Steadicam shot above, we’re following the main characters into a nightclub. Motivation enough to move with them. Or that crane shot from High Noon; the move reveals something important about the character. Again, solid motivation. But what happens when a camera move is unmotivated? If the camera moves simply because the filmmaker thinks it “looks cool”? (I’m looking at you, Michael Bay). Most often, an unmotivated camera move that isn’t serving the story reminds the viewer they are watching a movie. The move becomes visible instead of invisible, and usually, that’s the last thing a filmmaker wants. All of this is supposed to be invisible, remember?

    But sometimes, a filmmaker intentionally moves the camera without clear motivation to achieve a certain effect. For example, a tracking shot can move laterally through a scene with or without subjects in motion. Since there is no reason to move the camera, the movement can feel unmotivated and, therefore, more noticeable to the viewer. So why do it? Here’s a deep dive into how effective a lateral tracking shot can be:

    Maybe the best example of a really effective but completely unmotivated camera movement is one of filmmaker Spike Lee’s signature camera moves: The Spike Lee Dolly. At least once in every film, Spike Lee will put one or more characters on the same dolly as the camera and move them both through the scene. It’s disorienting and a little bizarre, but it creates a fascinating image that can draw the viewer into the psychology of the character:

    Well-planned and thoughtful camera movement, usually the motivated kind, can not only help tell the story, but it can also radically transform our relationship to the story. It doesn’t always have to be flashy. It could just be a subtle shift in perspective. A slight pan or a minute push in on a dolly. But it can change everything:

    Amazing Shots of QUENTIN TARANTINO

    3.3.2: Moving the Camera is shared under a CC BY-ND 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?